Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
J Chem Inf Model ; 63(3): 815-825, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645156

RESUMO

Over the past few years, new psychoactive substances (NPS) have become a global health and social problem because of their wide variety, constant structural renewal, vague legal definitions, and rapid adaptation to legal restrictions. The rapid structural modifications of NPS have posed significant challenges for the screening and identification of these new substances using traditional mass spectrometric techniques based on reference substances or a mass spectral database. Here, we propose supervised machine learning (ML) classification models such as k-nearest neighbors, support vector machine, random forest, and multigrained cascade forest for the rapid screening of NPS using mass spectrometric data. This approach utilizes ML methods to learn the statistical probability distributions of mass spectral data for NPS and non-NPS. Four classification ML models were generated and evaluated using a data set comprising 567 LC-MS and 732 GC-MS spectra. Through cross validation, we achieved an F1 score of 0.35-0.97. These algorithms were applied in conjunction with mass spectrometry techniques for the detection of six seizures including electronic cigarette oil and suspected powdered substances netted in drug trafficking cases. The models provided warning signals for synthetic cannabinoids, synthetic cathinones, and fentanyl. Thus, an early warning system was successfully established, which provided a useful method for reliable and effective identifications of unknown NPS.


Assuntos
Canabinoides , Sistemas Eletrônicos de Liberação de Nicotina , Psicotrópicos/análise , Psicotrópicos/química , Espectrometria de Massas , Aprendizado de Máquina
2.
Drug Test Anal ; 15(1): 84-96, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136085

RESUMO

Synthetic cathinones comprise psychostimulants with desired effects like euphoria, increased vigilance, appetite suppression, and-mainly depending on certain structural features-entactogenic properties. 3,4-EtPV (1-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-2-(pyrrolidin-1-yl)pentan-1-one) was first mentioned in an online drug forum in September 2021, where its imminent synthesis was announced. The goal was to produce a legal alternative to the phenylethylamines already banned by the German NpSG. In February and June 2022, two samples labeled with the name and molecular structure of 3,4-EtPV were analyzed. The molecular structure of the obviously mislabeled compound was elucidated and comprehensively characterized within the ADEBAR project. The synthetic cathinone identified differed from the declared 3,4-EtPV by a 3,4-propylene bridge instead of a 3,4-ethylene bridge and a piperidine ring instead of a pyrrolidine ring. The short name 3,4-Pr-PipVP (3,4-propylene-2-(1-piperidinyl)valerophenone) was suggested as a semisystematic name in collaboration with the European Monitoring Centre for Drugs and Drug Addiction. Herein, the results of the analyses are discussed and will enable forensic laboratories to update their databases quickly and identify 3,4-Pr-PipVP confidently. 3,4-Pr-PipVP is already scheduled under the German NpSG. This study highlights that there are ongoing efforts to deliberately circumvent generic definitions given, for example, in the German NpSG and that (unintentional?) mislabeling can be an issue. The end user purchasing substances online can never be sure that the material actually supplied will be the one ordered, and he might receive an illicit drug instead of an uncontrolled one. Furthermore, the purity is always unknown, creating health risks due to unexpected effects and potencies.


Assuntos
Alcaloides , Drogas Ilícitas , Masculino , Humanos , Catinona Sintética , Psicotrópicos/química , Alcaloides/análise , Drogas Ilícitas/química
3.
J Pharm Biomed Anal ; 216: 114798, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561436

RESUMO

This study describes the first reported development of a rapid, generic gradient Ultra-High Performance Liquid Chromatography (UHPLC) methodology with targeted triple quadrupole MS/MS using electrospray positive ionisation to detect and unambiguously confirm the identity of 33 substituted 1, 2-diarylethamine (or diphenidine) derivatives in solid drug samples. The in-house synthesised library included a range of derivatives possessing either electron donating/withdrawing substituents, commonly included in combinatorial libraries, of varying size and lipophilicity on the phenyl ring. These test probes were used to investigate if their order of elution and that of their regioisomers were dependent on the position and type of the substituent on the phenyl ring. In addition, investigations into the retention mechanism of the diphenidines under reverse-phase UHPLC conditions were undertaken. Common adulterants found within seized bulk samples were assessed to prove that the methodology was specific, and the developed UHPLC-MS/MS (tG = 10 min) protocol was applied to confirm the identity of the psychoactive components within four seized bulk samples provided by law enforcement.


Assuntos
Piperidinas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Psicotrópicos/química , Espectrometria de Massas em Tandem/métodos
4.
Curr Pharm Des ; 28(32): 2603-2617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34781870

RESUMO

BACKGROUND: Over the past few years, an emerging number of new psychoactive substances (NPSs) entered the illicit market. NPSs are designed to resemble the effects of classical drugs of abuse, reinforcing their effects and duration. Among the most abused NPS, synthetic cannabinoids are cannabinoid receptor agonists (SCRAs) that mimic the effect of the main psychotropic phytocannabinoid Δ9-tetrahydrocannabinol (THC). METHODS: We herein reviewed the international literature to provide available information on the newest SCRAs generation. RESULTS: Compared to the previous SCRAs generations, the structures of the last generation result in increased affinity for and efficacy at cannabinoid CB1 receptors, which are thought to be mainly responsible for the psychoactive effects of THC and its analogues. Accordingly, these more potent cannabimimetic effects may increase the number of adverse reactions such as neurological disorders (e.g., psychosis, agitation, irritability, paranoia, confusion, and anxiety), psychiatric episodes (e.g., hallucinations, delusions, self-harm), other physical conditions (e.g., tachycardia, hypertension, arrhythmia, chest pain, nausea, vomiting, and fever) and deaths. In the last decade, more than a hundred SCRAs from different chemical classes emerged on the illicit web market. SCRAs have been thoroughly studied: they were physico-chemically characterized, and pharmaco-toxicological characteristics were investigated. The last SCRAs generations include increasingly potent and toxic compounds, posing a potential health threat to consumers. CONCLUSION: From November 2017 to February 2021, at least 20 new "fourth-generation" SCRAs were formally reported to international drug agencies. Our understanding of the neurotoxicity of these compounds is still limited due to the lack of global data, but their potency and their toxicity are likely higher than those of the previous generations.


Assuntos
Agonistas de Receptores de Canabinoides , Dronabinol , Humanos , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/química , Psicotrópicos/química , Receptor CB1 de Canabinoide
5.
Drug Test Anal ; 14(2): 202-223, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34599648

RESUMO

INTRODUCTION: The analysis of novel psychoactive substances (NPS) represents a challenge in forensic toxicology, due to the high number of compounds characterized by different structures and physicochemical properties both among different subclasses and within a single subclass of NPS. The aim of the present work is the development and validation of a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the detection of NPS in whole blood. MATERIALS AND METHODS: A protein-precipitation based LC-MS/MS method for the detection of more than 180 NPS was developed and validated by assessing the following parameters: selectivity, linearity, accuracy, precision, limit of detection (LOD) and of quantification (LOQ) recovery, and matrix effect. Then, the method was applied to real forensic samples. RESULTS: The method allowed the identification of 132 synthetic cannabinoids, 22 synthetic opioids, and 28 substances among synthetic cathinones, stimulants, and other drugs. Validation was successfully achieved for most of the compounds. Linearity was in the range of 0.25-10 ng/ml for synthetic cannabinoids and 0.25-25 ng/ml for other drugs. Accuracy and precision were acceptable according to international guidelines. Three cases tested positive for fentanyl and ketamine, in the setting of emergency room administration. CONCLUSIONS: The present methodology represents a fast, not expensive, wide-panel method for the analysis of more than 180 NPS by LC-MS/MS, which can be profitably applied both in a clinical context and in postmortem toxicology.


Assuntos
Psicotrópicos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Toxicologia Forense/métodos , Limite de Detecção , Psicotrópicos/química , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
6.
Fa Yi Xue Za Zhi ; 37(4): 500-504, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34726002

RESUMO

ABSTRACT: Objective To establish an ion chromatography method for the salt form determination of new psychoactive substances (NPS). Methods The method of conducting qualitative and quantitative analysis of six types of organic acid ions (acetate ion, tartrate ion, maleate ion, oxalate ion, fumarate ion, citrate ion) and five types of inorganic anions (fluoride ion, chloride ion, nitrate ion, sulfate ion, phosphate ion) in NPS sample by ion chromatography was developed. The salt forms of 222 seized NPS samples (103 samples with synthetic cannabinoids, 81 samples with cathinones, 44 samples with phenylethylamines, 12 samples with tryptamines, 7 samples with phencyclidines, 6 samples with piperazines, 2 samples with aminoindenes, 26 samples with fentanyls and 43 samples with other types of NPS) were analyzed by this method. Results Each anion had good linearity in the corresponding linear range, the correlation coefficients (r) were greater than 0.999, the limits of detection were 0.01-0.05 mg/L, and the limits of quantitative were 0.1-0.5 mg/L. Except that 5F-BEPIRAPIM was hydrochloride, the salt forms of the other 102 synthetic cannabinoids were all base. The salt form of 81 cathinone samples, 44 phenylethylamine samples, 7 phencyclidine samples and 2 aminoindene samples were all hydrochloride. The salt forms of tryptamine samples included base, hydrochloride, fumarate and oxalate. The salt forms of piperazine samples included base and hydrochloride. The salt forms of fentanyl samples and samples of other types included base, hydrochloride and citrate. Conclusion Ion chromatography is a simple, accurate and efficient method for determining the salt form of NPS samples, which makes the qualitative and quantitative conclusions of NPS more scientific and rigorous.


Assuntos
Psicotrópicos/química , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Íons
7.
Artigo em Inglês | MEDLINE | ID: mdl-34678705

RESUMO

We have investigated the metabolic profile of N-ethyl heptedrone, a new designer synthetic stimulant drug, by using data independent acquisition mass spectrometry. Phase I and phase II metabolism was studied by in vitro models, followed by liquid-chromatography coupled to mass spectrometry, to characterize and pre-select the most diagnostic markers of intake. N-ethyl heptedrone was incubated in the presence of pooled human liver microsomes. The contribution of individual enzymatic isoforms in the formation of the phase I and phase II metabolites was further investigated by using human recombinant cDNA-expressed cytochrome P450 enzymesand uridine 5'-diphospho glucuronosyltransferases. The analytical workflow consisted of liquid-liquid extraction with tert-butyl-methyl-ether at alkaline pH, performed before (to investigate the phase I metabolic profile) and after (to investigate the glucuronidation profile) enzymatic hydrolysis. The separation, identification, and determination of the compounds formed in the in vitro experiments were carried out by using liquid chromatography coupled to either high- or low-resolution mass spectrometry. Data independent acquisition method, namely sequential window acquisition of all theoretical fragment-ion spectra (SWATH®) and product ion scan were selected for high-resolution mass spectrometry, whereas multiple reaction monitoring was used for low-resolution mass spectrometry. Thirteen phase-I metabolites were isolated, formed from reactions being catalyzed mainly by CYP1A2, CYP2C9, CYP2C19 and CYP2D6 and, to a lesser degree, by CYP3A4 and CYP3A5. The phase I biotransformation pathways included hydroxylation in different positions, reduction of the ketone group, carbonylation, N-dealkylation, and combinations of the above. Most of the hydroxylated metabolites underwent conjugation reactions to form the corresponding glucurono-conjugated metabolites. Based on our in vitro observation, the metabolic products resulting from reduction of the keto group, N-dealkylation and hydroxylation of the aliphatic chain appear to be the most diagnostic target analytes to be selected as markers of exposure to N-ethyl heptedrone.


Assuntos
Cromatografia Líquida/métodos , Cetonas/química , Cetonas/urina , Espectrometria de Massas/métodos , Biotransformação , Citocromo P-450 CYP3A/metabolismo , Drogas Desenhadas/análise , Drogas Desenhadas/metabolismo , Feminino , Humanos , Hidroxilação , Masculino , Metaboloma , Metabolômica , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/urina , Quinazolinas/química , Quinazolinas/metabolismo
8.
J Am Soc Mass Spectrom ; 32(9): 2417-2424, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399051

RESUMO

Novel psychoactive substances (NPS) are constantly emerging in the drug market, and synthetic cannabinoids (SCs) are included in this NPS family. Forensic laboratories often struggle with these continually emerging SCs, forcing them to develop an untargeted workflow to incorporate these psychoactive drugs in their procedures. Usually, forensic laboratories select analytical methods based on targeted mass spectrometry (MS) technologies for strictly tracking already known NPS. The appropriate way to tackle unknown substances is to develop pipelines for untargeted analysis that include LC-HRMS analytical methods and data analysis. Once established, this strategy would allow drug testing laboratories to be always one step ahead of the new trends concerning the "designer drugs" market. To address this challenge an untargeted workflow based on mass spectrometry data acquisition and data analysis was developed to detect SCs in oral fluid (OF) samples at a low concentration range. The samples were extracted by mixed-mode solid-phase extraction and analyzed by Liquid Chromatography - High-Resolution Mass Spectrometry (LC-HRMS). Tandem mass spectra (MS2) were recorded performing a variable isolation width across a mass range of all theoretical precursor ions (vDIA) after the chromatographic separation. After raw data processing with the MSDial software, the deconvoluted features were sent to GNPS for Feature-Based Molecular Networking (FBMN) construction for nontargeted data mining. The FBMN analysis created a unique integrated network for most of the SCs assessed in the OF at a low level (20 ng/mL). These results demonstrate the potential of an untargeted approach to detect different derivatives of SCs at trace levels for forensic applications.


Assuntos
Canabinoides/análise , Biologia Computacional/métodos , Mineração de Dados/métodos , Saliva/química , Medicamentos Sintéticos/análise , Canabinoides/química , Canabinoides/isolamento & purificação , Cromatografia Líquida/métodos , Humanos , Psicotrópicos/análise , Psicotrópicos/química , Psicotrópicos/isolamento & purificação , Extração em Fase Sólida/métodos , Medicamentos Sintéticos/química , Medicamentos Sintéticos/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
9.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361040

RESUMO

Pyrovalerone cathinones are potent psychoactive substances that possess a pyrrolidine moiety. Pyrovalerone-type novel psychoactive substances (NPS) are continuously detected but their pharmacology and toxicology are largely unknown. We assessed several pyrovalerone and related cathinone derivatives at the human norepinephrine (NET), dopamine (DAT), and serotonin (SERT) uptake transporters using HEK293 cells overexpressing each respective transporter. We examined the transporter-mediated monoamine efflux in preloaded cells. The receptor binding and activation potency was also assessed at the 5-HT1A, 5-HT2A, 5-HT2B, and 5-HT2C receptors. All pyrovalerone cathinones were potent DAT (IC50 = 0.02-8.7 µM) and NET inhibitors (IC50 = 0.03-4.6 µM), and exhibited no SERT activity at concentrations < 10 µM. None of the compounds induced monoamine efflux. NEH was a potent DAT/NET inhibitor (IC50 = 0.17-0.18 µM). 4F-PBP and NEH exhibited a high selectivity for the DAT (DAT/SERT ratio = 264-356). Extension of the alkyl chain enhanced NET and DAT inhibition potency, while presence of a 3,4-methylenedioxy moiety increased SERT inhibition potency. Most compounds did not exhibit any relevant activity at other monoamine receptors. In conclusion, 4F-PBP and NEH were selective DAT/NET inhibitors indicating that these substances likely produce strong psychostimulant effects and have a high abuse liability.


Assuntos
Alcaloides/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Psicotrópicos/química , Pirrolidinas/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Alcaloides/farmacologia , Monoaminas Biogênicas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células HEK293 , Humanos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ligação Proteica , Psicotrópicos/farmacologia , Pirrolidinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
10.
Yakugaku Zasshi ; 141(7): 961-970, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193656

RESUMO

The Japanese Pharmacopoeia (JP) is an official normative publication that is referred to, for establishing the authenticity and properties and maintaining the quality of pharmaceutics in Japan. Partial amendments are periodically made to these guidelines to keep up with the progress of science and technology, and the international harmonization is revised every 5 years. Thus, "Internationalization of the JP" is one of the more important issues to address for the revision of the JP. For example, the incorporation of the test methods that have been used in other pharmacopeias, such as the United States Pharmacopeia (USP) and the European Pharmacopoeia (EP), into the JP is a useful approach. In light of this, we have recently reported changes in test methods in the 17th JP, "Establishment of a quantitative test method for clonidine hydrochloride from using a potentiometric titration method to using HPLC". As a part of our ongoing research to change test methods for internationalization, we selected lorazepam. Lorazepam is analyzed using a potentiometric titration method as listed in the 17th JP; however, both the USP and EP use HPLC for quantitative analysis of this drug. In this study, we synthesized the related impurities of lorazepam listed in the USP and the EP and determined their purities using quantitative NMR. The separation conditions of these compounds, including lorazepam, were examined using HPLC and simultaneous analyses were performed. In addition, lorazepam extracted from the tablets was analyzed using conditions similar to those used for the analysis of the related impurities.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Internacionalidade , Lorazepam/análise , Farmacopeias como Assunto/normas , Psicotrópicos/análise , Japão , Lorazepam/síntese química , Lorazepam/química , Espectroscopia de Ressonância Magnética , Psicotrópicos/síntese química , Psicotrópicos/química
11.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202634

RESUMO

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4'-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Psicotrópicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/toxicidade , Relação Estrutura-Atividade
12.
J Pharmacol Exp Ther ; 379(1): 1-11, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244232

RESUMO

Compounds with novel or fentanyl-like structures continue to appear on the illicit drug market and have been responsible for fatalities, yet there are limited preclinical pharmacological data available to evaluate the risk of these compounds to public health. The purpose of the present study was to examine acetyl fentanyl, butyryl fentanyl, 3,4-dichloro-N-[[1-(dimethylamino)cyclohexyl]methyl]benzamide (AH-7921), 1-cyclohexyl-4-(1,2-diphenylethyl)piperazine (MT-45), 4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide (W-15), and 4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide (W-18) for their relative potency to reference opioids and their susceptibility to naltrexone antagonism using the 55oC warm-water, tail-withdrawal assay of antinociception and a morphine drug discrimination assay in male, Sprague-Dawley rats. In the antinociception assay, groups of 8 rats per drug were placed into restraining tubes, their tails were immersed into 40o or 55oC water, and the latency for tail withdrawal was measured with a cutoff time of 15 seconds. In the drug discrimination assay, rats (n = 11) were trained to discriminate between 3.2 mg/kg morphine and saline, subcutaneously, in a two-choice, drug discrimination procedure under a fixed ratio-5 schedule of sucrose pellet delivery. Morphine, fentanyl, and four of the synthetic opioids dose dependently produced antinociception and fully substituted for morphine in the drug discrimination assay with the following rank order of potency: fentanyl > butyryl fentanyl > acetyl fentanyl > AH-7921 > MT45 > morphine. All drugs that produced antinociception or morphine-like discriminative stimulus effects were blocked by naltrexone. W-15 and W-18 did not show antinociceptive or morphine-like discriminative stimulus effects at the doses tested supporting a lack of opioid activity for these two compounds. These findings suggest that butyryl fentanyl, acetyl fentanyl, AH-7941, and MT-45 have abuse liability like other opioid agonists. SIGNIFICANCE STATEMENT: As novel psychoactive substances appear on the illicit drug market, preclinical pharmacological testing is required to assist law enforcement, medical professionals, and legal regulators with decisions about potential public health risks. In this study, four synthetic opioids, acetyl fentanyl, butyryl fentanyl, AH-7921, and MT-45 produced effects similar to fentanyl and morphine and were blocked by naltrexone. These data suggest the four synthetic opioids possess similar abuse liability risks as typical opioid agonists.


Assuntos
Analgésicos Opioides/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Psicotrópicos/farmacologia , Tempo de Reação/efeitos dos fármacos , Analgésicos Opioides/química , Animais , Fármacos do Sistema Nervoso Central/química , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Masculino , Medição da Dor/métodos , Psicotrópicos/química , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia
13.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299276

RESUMO

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Assuntos
Analgésicos Opioides/toxicidade , Anisóis/toxicidade , Derivados de Benzeno/toxicidade , Alucinógenos/toxicidade , Fenciclidina/toxicidade , Psicotrópicos/toxicidade , Receptores Opioides/metabolismo , Tramadol/toxicidade , Analgésicos Opioides/química , Animais , Anisóis/química , Derivados de Benzeno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fenciclidina/química , Psicotrópicos/química , Tramadol/química
14.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922609

RESUMO

Psychoactive drugs are classified as contaminants of emerging concern but there is limited information on their fate in surface waters. Here, we studied the photodegradation of three psychoactive drugs (sertraline, clozapine, and citalopram) in the presence of organic matter (WEOM) extracted under mild conditions from sediment of Lake Pamvotis, Greece. Spectral characterization of WEOM confirmed its humic-like nature. Preliminary experiments using chemical probes showed that WEOM was able to produce oxidant triplet excited state (3WEOM*), singlet oxygen (1O2), and hydroxyl radicals under irradiation with simulated solar light. Then, WEOM at 5 mgC L-1 was irradiated in the presence of the three drugs. It enhanced their phototransformation by a factor of 2, 4.2, and 16 for sertraline, clozapine, and citalopram, respectively. The drastic inhibiting effect of 2-propanol (5 × 10-3 M) on the reactions demonstrated that hydroxyl radical was the key intermediate responsible for drugs photodegradation. A series of photoproducts were identified by ultra-high performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry (HR-MS). The photodegradation of the three drugs proceeded through several pathways, in particular oxidations of the rings with or without O atom inclusion, N elimination, and substitution of the halogen by OH. The formation of halogenated aromatics was observed for sertraline. To conclude, sedimental natural organic matter can significantly phototransform the studied antidepressant drugs and these reactions need to be more investigated. Finally, ecotoxicity was estimated for the three target analytes and their photoproducts, using the Ecological Structure Activity Relationships (ECOSAR) computer program.


Assuntos
Radical Hidroxila/química , Fotólise , Psicotrópicos/química , Poluentes Químicos da Água/química
15.
Chem Soc Rev ; 50(12): 6950-7008, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908526

RESUMO

Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.


Assuntos
Produtos Biológicos/metabolismo , Psicotrópicos/metabolismo , Produtos Biológicos/química , Estrutura Molecular , Psicotrópicos/química
16.
Drug Test Anal ; 13(8): 1516-1526, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835674

RESUMO

The emerging market of new psychoactive substances (NPSs) is a global-scale phenomenon, and their identification in biological samples is challenging because of the lack of information about their metabolism and pharmacokinetic. In this study, we performed in silico metabolic pathway prediction and in vivo metabolism experiments, in order to identify the main metabolites of mephtetramine (MTTA), an NPS found in seizures since 2013. MetaSite™ software was used for in silico metabolism predictions and subsequently the presence of metabolites in the blood, urine, and hair of mice after MTTA administration was verified. The biological samples were analyzed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) using a benchtop Orbitrap instrument. This confirmed the concordance between software prediction and experimental results in biological samples. The metabolites were identified by their accurate masses and fragmentation patterns. LC-HRMS analysis identified the dehydrogenated and demethylated-dehydrogenated metabolites, together with unmodified MTTA in the blood samples. Besides unmodified MTTA, 10 main metabolites were detected in urine. In hair samples, only demethyl MTTA was detected along with MTTA. The combination of Metasite™ prediction and in vivo experiment was a powerful tool for studying MTTA metabolism. This approach enabled the development of the analytical method for the detection of MTTA and its main metabolites in biological samples. The development of analytical methods for the identification of new drugs and their main metabolites is extremely useful for the detection of NPS in biological specimens. Indeed, high throughput methods are precious to uncover the actual extent of use of NPS and their toxicity.


Assuntos
Drogas Desenhadas/metabolismo , Drogas Desenhadas/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Psicotrópicos/metabolismo , Psicotrópicos/toxicidade , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Drogas Desenhadas/química , Cabelo/química , Hidrogenação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Naftalenos/química , Psicotrópicos/química , Software , Espectrometria de Massas em Tandem
17.
Drug Test Anal ; 13(7): 1440-1444, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33720530

RESUMO

Numerous case reports of intoxications with nutmeg seeds (Myristica fragrans, Houtt.) can be found in literature often following their abuse, as psychotropic effects were described after ingestions of large doses. The successful detection of the main ingredients of the nutmeg seeds essential oil elemicin, myristicin, and safrole, as well as their metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) was already described. The aim of this study was to investigate the detectability of the main ingredients of nutmeg seeds and their metabolites in human blood and urine samples using liquid chromatography coupled to linear ion trap mass spectrometry (LC-LIT-MSn ) and liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS/MS) after nutmeg seed abuse. Sample material of three individuals was retrospectively investigated after a systematic screening approach indicated an intoxication with nutmeg seeds as a likely cause of symptoms. Metabolic patterns in plasma and urine using GC-MS were comparable with those described in earlier publications. Investigations using hyphenated liquid chromatography techniques lead to the detection of myristicin and safrole, as well as further metabolites not described using GC-MS and revealed sulfation as an additional Phase II metabolic pathway. These results might help to detect or confirm future intoxications with nutmeg seeds by using LC-MS techniques.


Assuntos
Myristica/intoxicação , Psicotrópicos/intoxicação , Detecção do Abuso de Substâncias/métodos , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Derivados de Alilbenzenos/análise , Cromatografia Líquida/métodos , Dioxolanos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/métodos , Myristica/química , Óleos Voláteis/análise , Psicotrópicos/química , Pirogalol/análogos & derivados , Pirogalol/análise , Estudos Retrospectivos , Safrol/análise , Sementes
18.
Rapid Commun Mass Spectrom ; 35(10): e9067, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33656207

RESUMO

RATIONALE: Recently, new psychoactive substances (NPS) have emerged as a public health risk. Particularly, their chemical structures are modified to avoid detection. Synthetic NPS with effects similar to those of illegal drugs have been recently detected and synthesized worldwide, including MDMB-FUBINACA and APINAC, making it essential to rapidly and accurately detect NPS. METHODS: Fourteen NPS with similar structures were selected and their structures identified using 1 H and 13 C NMR spectroscopy. Additionally, we proposed the fragmentation pattern of each compound using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS). A simultaneous analytical method using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was also developed and applied to real samples to detect the 14 NPS. The method was validated based on the specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, matrix effect, and stability according to international validation guidelines. RESULTS: The established method was used to screen 65 different matrix samples using LC/ESI-MS/MS. By comparing the calculated product ion ratios with those of standards, 2C-B in one of the real samples and 5F-MDMB-PICA in 20 samples were identified. For re-confirmation of detected compounds, the fragmentation pattern of each compound was compared with that of each standard using LC/QTOF-MS. CONCLUSIONS: In this study, LC/QTOF-MS data were used to elucidate the structures and fragmentation patterns of 14 NPS. A simultaneous method was developed using LC/ESI-MS/MS, which was applied to 65 real samples. The presented method and results can assist in ensuring the safety of public health from illegal adulteration.


Assuntos
Cromatografia Líquida/métodos , Psicotrópicos/química , Espectrometria de Massas em Tandem/métodos , Adamantano/análogos & derivados , Adamantano/análise , Canabinoides/análise , Contaminação de Medicamentos , Indazóis/análise , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray/métodos
19.
Drug Test Anal ; 13(7): 1282-1294, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624933

RESUMO

The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on-site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SCs) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone, and 4-chloro-alpha-pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen-printed electrodes (SPEs). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography-high-resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas chromatography-mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever-diversifying drug market.


Assuntos
Alcaloides/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Psicotrópicos/análise , Alcaloides/química , Técnicas Eletroquímicas , Cromatografia Gasosa-Espectrometria de Massas , Drogas Ilícitas/análise , Drogas Ilícitas/química , Oxirredução , Psicotrópicos/química
20.
Neuropharmacology ; 186: 108475, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529677

RESUMO

The emergence of new synthetic cathinones continues to be a matter of public health concern. In fact, they are quickly replaced by new structurally related alternatives. The main goal of the present study was to characterize the pharmacological profile, the psychostimulant and rewarding properties of novel cathinones (pentedrone, N-ethyl-pentedrone, α-PVP, N,N-diethyl-pentedrone and α-PpVP) which only differs in their amino terminal substitution. Rat synaptosomes were used for [3H]dopamine uptake experiments. HEK293 transfected cells (hDAT, hSERT, hOCT; human dopamine, serotonin and organic cation transporter) were also used for [3H]monoamine uptake and transporter binding assays. Molecular docking was used to investigate the effect of the amino substitutions on the biological activity. Hyperlocomotion and conditioned place preference paradigm were used in order to study the psychostimulant and rewarding effects in mice. All compounds tested are potent inhibitors of DAT with very low affinity for SERT, hOCT-2 and -3, and their potency for inhibiting DAT increased when the amino-substituent expanded from a methyl to either an ethyl-, a pyrrolidine- or a piperidine-ring. Regarding the in vivo results, all the compounds induced an increase in locomotor activity and possess rewarding properties. Results also showed a significant correlation between predicted binding affinities by molecular docking and affinity constants (Ki) for hDAT as well as the cLogP of their amino-substituent with their hDAT/hSERT ratios. Our study demonstrates the role of the amino-substituent in the pharmacological profile of novel synthetic cathinones as well as their potency inhibiting DA uptake and ability to induce psychostimulant and rewarding effects in mice.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Simulação de Acoplamento Molecular/métodos , Psicotrópicos/química , Psicotrópicos/farmacologia , Recompensa , Animais , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA